
Reducing Risk and Building
Maintainable Systems with
Encapsulation

Ed Mullen | @edmullen

We’re government
employees that can
help you build, buy,
and share the best
digital government
services available.

2

Hi.

 Ed Mullen
 18F Strategist

● Hi, I’m Ed Mullen
● I’m a strategist at 18F
● 18F is a tech consultancy within GSA

○ Fed
○ We do
○ We work with federal and state agencies

● This is our team
○ That’s me in the back
○ I’m always in the back of photos

● I’ve worked with
○ CMS, FNS, ACF
○ several states on projects in the health and human services space
○ Prior to 18F I worked at HHS for a while
○ Lead user experience for HealthCare.gov in 2010 and again in 2012/13

We want to help
people get the
benefits they
deserve.

● We work in this field because
● we want to help people get the benefits they deserve
● and are entitled to.

We rely on
technical systems
to do this.

● We rely on a variety of technical systems to ensure
○ eligible people get enrolled
○ benefits are issued
○ providers get paid for the care they provide.

● Program success is dependent on the efficacy of the underlying technical
infrastructure.

We want these
systems to work
well.

● Compliance is not the goal.
● We want these systems to work well.
● We’ve seen the impact these programs can have.
● We know they save lives.
● Maybe we were once enrolled in these programs, or members of our families.

But none of these
systems are perfect.

● But none of these systems are perfect.
● If we’re honest, many are really struggling
● Everyone has either outdated legacy systems
● or expensive newer systems we barely understand
● Few can quickly deploy new functionality or tools.

Modernizing these
systems is hard.

● Improvement efforts are often problematic
● I don’t need to tell you all, or give examples

13%
of major government software
projects succeed.

The Standish Group

Why?
● Waterfall development methods

● Very large projects

● Up-front requirements gathering

● Diminished technical capacity within government

● Long, high-dollar vendor contracts

● There are many reasons
● Some include READ

We recently released a
new report on how to
avoid these problems.

Randy HartRobin Carnahan

● We recently released a new report on how to avoid these problems.
● Two authors are here
● Randy’s photo is a bit old, he’s got a rather goofy ponytail now
● It can help you set projects up for success by

○ asking the right questions,
○ identifying the right outcomes,

Basic principles of modern
software design
● User-centered design
● Product ownership
● Agile software development
● DevOps
● Modular contracting
● Building with loosely-coupled parts

The report details the basic principles of modern software design.

● User-centered design - Ongoing research with users and prioritizing around
their needs

● Product - Understanding where you’re headed, balancing user and business
needs, course correcting as needed

● Agile - Developing working software delivered in short cycles, always
re-evaluating as you go

● DevOps - Sometimes DevSecOps - Powering that continuous delivery to
users through deployment automations

● Modular contracting - Contracting methodology that supports agile, smaller
agreements, focused on objectives not deliverables.

● Loosely-coupled -
○ Technical architecture approach
○ discrete components
○ communicating through APIs,
○ as opposed to a tightly-coupled monolithic architecture.

But how do we
get there?

● That’s all fine, but how do we get there?

As always,
bit by bit.

● As always, bit by bit
● Incremental work most fundamental thread in 18F’s work
● Core to modern software development

Basic principles of modern
software design
● User-centered design
● Product ownership
● Agile software development
● DevOps
● Modular contracting
● Building with loosely-coupled parts

● Each concept is an area of practice worth growing
● These concepts are reinforcing
● For example,

○ hard to follow user needs when contract has fixed functional
deliverables

○ Not getting benefits of practicing Agile if you can’t continuously deploy
to users

Basic principles of modern
software design
● User-centered design
● Product ownership
● Agile software development
● DevOps
● Modular contracting
● Building with loosely-coupled parts

● focus on this aspect
● can feel like the most overwhelming aspect.
● Especially for our context

○ struggling with either legacy systems
○ black-box system that was built for us that we don’t fully understand

● If you have a large, monolithic, or mission-critical system, modernizing the
system is daunting

● How can you start to unwind such a system?

We just have to
rebuild the whole
thing, right?

●

😬
Hold on now, please
don’t do that!

●

13%
of major government software
projects succeed.

The Standish Group

● Remember what we said before

Strangler (fig) pattern
 or

Encapsulation
 or

Encasement strategy

● We’re going to look at a technical strategy that addresses just this situation.
● different names, same concept
●

Strangler (fig)
pattern

Martin Fowler

● Sometimes it’s called The strangler pattern comes from Martin Fowler
● refers to the Strangler Fig, which starts in the upper branches of a host tree
● Grows and grows and eventually overtakes the host tree, strangling it
● But “strangler” is a pretty violent term, and I avoid it for that reason.
● Martin Fowler does too

Encapsulation

● Encapsulation is very similar
● It’s the idea that you shouldn’t need to know how a system works to use it.

Encasement
strategy

● The encasement strategy is a term we’ve used at 18F for a while
● It relates fragile legacy systems to a radioactive nuclear site like Chernobyl
● both are things that are scary to touch
● It’s a bit hyperbolic, but this is the term I tend to use

The basic idea

● So here’s the basic idea

● Here’s the basic idea
● You’ve got your existing system, a front-end interface and the backend

components
● They’ve been around for a long time, have a bunch of brittle pieces, and

people are afraid to change it too much because everyone relies on it and no
one is sure how it all works

● Using the Encasement strategy
● If you want to build a new component, you build new functionality next to the

old system, without really touching it too much

● In order to use data or functions from the legacy system
● An API layer is built.
● API means Application Programming Interface, and in general is a way for one

application/program/system to interact with another
● The API here is sort of translation layer between systems, allowing them to

communicate regardless of the technology used
● It allows the new system to send and receive the necessary data without

having to worry about what’s going on inside the old system
● It also acts as a pivot point, loosely coupling the new system to the legacy

system

● New functionality gains adoption
● You turning off old functionality as it is replaced

● You do the same thing with the backend systems
● Gradually shifting responsibilities from the old backend to new backend

● Once you’ve shifted all the front and back end functionality over to the new
system,

● You can shut down the old system
● That means you can shut down that on-prem data center, having moved

everything to the cloud
● Or dedicate ongoing resources to run all the manual processes
● (other modernization goal)
● There was no big bang launch here, just gradually rolling out new features,

turning off old parts, until you finally have everything modernized
● But really, this image is a bit of a lie

● Developing this API layer opens up a wide range of possibilities
● The ability to build separate, smaller, more focused tools
● Involve multiple vendors in smaller procurements
● Leverage in-house talent to build components
● This is what we mean by “loosely-coupled architecture or systems
● Different components, interacting with each other through well-defined APIs
● each system doing its own thing, blissfully unaware of the other systems
● but getting everything they need through the APIs

Looking a bit
deeper

● So now let’s look at how the encasement strategy can actually transform an
application people use

● So here is our legacy system
● Let’s say this is an application eligibility workers use to do their work

● We’ve got a homepage or start screen.

● We’ve got four tasks, or complete series of steps that a user needs to take to
accomplish a piece of work.

● And then we’ve got work we know about
● things we know we need to improve

● And things we learn through research with or users

● The first thing we have to do is prioritize our work
○ This is part of adopting a “product” mentality

● This is about more than technology
○ can’t do everything at once
○ Need to direct our work
○ We create a prioritized backlog of work
○ constantly re-evaluate
○ Not a sequential order burning fires

At first, focus on learning and
don’t bite off too much
● Prioritize meaningful new pieces that aren’t too hard

● Build confidence in developing new APIs and building
this way

● Stick with read-only functionality until you’re
comfortable

● Early on, we’ll want to prioritize learning
○ existing data
○ our old backend systems
○ building with agile methods
○ new technologies such as cloud environment,
○ deployment methods
○ security requirements

● Pick
○ meaningful things
○ deliver real value to users
○ don’t bite off too much

● Also pick things that help you gain confidence
○ building your new APIs
○ knowing you can deliver this way
○ focus on reading data from your old systems, maybe hold off on write

activities

● old application and our prioritized work
● red box = new task/module/procurement
● in the top priority slot.
● We’ll work on that first.

● searching for a person
● where a user looks for a specific person to work their case.

● We introduce the new module to our system.
● We’ll call it E2.
● It’s an alternate experience that focused on the same task as the legacy E

task.
● We launch it alongside the existing workflow.
● Users can use either the old method or the new
●

● Once E2 has been adopted, the legacy E experience can be hidden.
●

● Maybe our next task is recertifying eligibility

● We introduce the recertification workflow
● Shown here as D2.
●
●
●

● With adoption of the new recertification, we hide the legacy D experience.
● Note how we’re shifting responsibilities from the old system to the new one.
● And we’re running them alongside existing legacy experiences

● New priority is focused on a new homepage
● The new homepage module provides navigation to both legacy and new

experiences.

● Maybe we add new functionality not in legacy

● Them maybe we improve one of our new tasks further
●

● And then we replace another workflow

● And another

● After launching a number of modules,
● we have a system that’s been iteratively transformed.
● We maintain a roadmap
● continue making incremental improvements.

But won’t this lead to a disjointed
experience during the transition?
● Yup.

● Will experience be disjointed?
● some tasks in old way and some in new?
● Yup. that’s fine.
● Forward motion is better than perfect consistency.
● Here are a few tips that make it manageable

● Navigation is always difficult.
● Once set, it can be difficult to change.
● Users get used to it. Stakeholders fight over it.
● Adopting a “hub-and-spoke” approach to global navigation.
● Teams building a module don’t need to think about global nav,
● just link back home.
●

● Use the homepage for navigation
● facilitate global navigation
● aggregating links to anything necessary up front
● You can avoid updating all you global navs by teaching folks to navigate from

the home
●

● Some services will need to be exposed across pages:
● Each module needs to be aware of the user’s identity.
● Use search is a first class means of navigation
● accessible in each workflow.
●

This will look different if your
legacy system is a mainframe
green screen or desktop
application.

● will look different if the application interface you are updating is not a
web-based application

● If you have a green screen system or software that is installed on each
eligibility worker’s computer

● You’ll do it a bit differently
● Users can’t just follow links between old pages and new
● Context switching is real
● Still, follow a similar process
● Identify meaningful tasks that can be built anew
● fully be completed in the new system to avoid context switching.

What are some of
the implications?

●

Optimized for
change

● You’ll be optimized for change
● Priorities change
● You should be able to respond to changing needs of your workers and clients
● Building out that API layer makes that easier.
● Optimized for change.

Deliver value faster

● Deliver value faster
● As pieces are developed, they are quickly rolled out
● You don’t have to wait until everything you’ve dreamed of is finished
● Roll em’out and test them with users
● Deliver value faster

Reduced risk

● Reduced risk
● You’re building smaller pieces
● Run concurrently for a short time
● Make switchover when proven
● Risk is scoped the the smaller workflow, rather than the broad system
● Reduced risk

Less vendor
dependency

● Less vendor dependency
● With APIs, vendors don’t need to understand the whole system
● If one vendor doesn’t work out, you can hire another one with less startup

costs
● Or multiple vendors can be working on different pieces without coordinating
● Your well-documented APIs allow them to get started fast
● Less vendor dependency

Become open to
unanticipated uses

● Become open to unanticipated uses
● With API-layer in front of your backend systems
● you’re able to explore new opportunities you hadn’t planned
● Say commodity workflow management system - optimize application

processing
● Plug into APIs quickly
● “commodity” = truly ready to use out of the box,
● Connect the workflow system through your APIs and start using the product

instead of building one yourself
● Become open to unanticipated uses

Use the APIs of
others

● Use the APIs of others
● When loosely-coupled, and pieces are talking to each other through your

APIs, you also become prepared to use APIs of others
● Some of you may remember MAGI-in-the-Cloud
● That’s one example

Exploring the idea of sharing eligibility criteria across
multiple states via APIs to reduce the work states need
to build in their own systems.

● Another example: Eligibility APIs Initiative
● We’re exploring the idea of sharing eligibility criteria

○ across multiple states via APIs
○ reduce the work states need to build in their own systems.

Modernizing these
systems is hard.

● As I said before, modernizing these systems is hard
● We’ve had success using this approach, but it’s a long road
● Hopefully this provides some food for thought.

18F Human
Services Portfolio

Talk
to me

Talk to
Robin or Randy

github.com/18F/MESC2019

● I’ll leave this up here
● We’ve got a number of people to talk to
● Portfolio
● Me,
● Robin and Randy
● There’s a link to grab this presentation, learn more about our work at 18F, find

our more about the Eligibility APIs Initiative, and get that report I mentioned.
● I think we have some time for questions, I’m happy to try to answer any

questions you may have.
● I also have my colleague Greg Walker here to help with some of the meatier

technical questions you may have.
●

https://github.com/18F/MESC2019-Encapsulation

Thanks to the following colleagues whose ideas I’ve
pulled from in this presentation:

● Steven Reilly

● Jeremy Zilar

● Uchenna Moka-Solana

● Dr. Robert Read

