Il Ed Mullen | @edmullen

Ed Mullen
18F Strategist

° Hi, 'm Ed Mullen

e I'm a strategist at 18F

e 18F is a tech consultancy within GSA
o Fed
o Wedo

o We work with federal and state agencies
e Thisis our team
o That’s me in the back
o I'm always in the back of photos
e I've worked with
o CMS, FNS, ACF
o several states on projects in the health and human services space
o Prior to 18F | worked at HHS for a while
o Lead user experience for HealthCare.gov in 2010 and again in 2012/13

e We work in this field because
e we want to help people get the benefits they deserve
e and are entitled to.

e We rely on a variety of technical systems to ensure
o eligible people get enrolled
o benefits are issued
o providers get paid for the care they provide.
e Program success is dependent on the efficacy of the underlying technical
infrastructure.

Compliance is not the goal.

We want these systems to work well.

We've seen the impact these programs can have.

We know they save lives.

Maybe we were once enrolled in these programs, or members of our families.

But none of these systems are perfect.

If we’re honest, many are really struggling
Everyone has either outdated legacy systems

or expensive newer systems we barely understand
Few can quickly deploy new functionality or tools.

Modernizing these

systems is hard.

e Improvement efforts are often problematic
e | don’t need to tell you all, or give examples

13%

of major government software
projects succeed.

The Standish Group

Why?

e Waterfall development methods

e Very large projects

e Up-front requirements gathering

e Diminished technical capacity within government

e Long, high-dollar vendor contracts

e There are many reasons
° Some include READ

We recently released a

De-risking custom

new report on how to technology projects
avoid these problems. Abandhk st dgeingand overs

August 5, 2019

Robin Carnahan, robin.camahan@gsa.gov

Randy Hart, randy.hart@gsa.gov

Waldo Jaquith, waldo jaquith@gsa.gov

18F, Technology Transformation Service, General Services Administration

10
Robin Carnahan Randy Hart
e We recently released a new report on how to avoid these problems.
e Two authors are here
e Randy’s photo is a bit old, he’s got a rather goofy ponytail now
e It can help you set projects up for success by

o asking the right questions,
o identifying the right outcomes,

Basic principles of modern
software design

User-centered design

Product ownership

Agile software development
DevOps

Modular contracting

Building with loosely-coupled parts

The report details the basic principles of modern software design.

User-centered design - Ongoing research with users and prioritizing around
their needs
Product - Understanding where you're headed, balancing user and business
needs, course correcting as needed
Agile - Developing working software delivered in short cycles, always
re-evaluating as you go
DevOps - Sometimes DevSecOps - Powering that continuous delivery to
users through deployment automations
Modular contracting - Contracting methodology that supports agile, smaller
agreements, focused on objectives not deliverables.
Loosely-coupled -

o Technical architecture approach

o discrete components

o communicating through APIs,

o as opposed to a tightly-coupled monolithic architecture.

But how do we

get there?

e That's all fine, but how do we get there?

e As always, bit by bit
° Incremental work most fundamental thread in 18F’s work
e Core to modern software development

Basic principles of modern
software design

User-centered design

Product ownership

Agile software development
DevOps

Modular contracting

Building with loosely-coupled parts

e Each concept is an area of practice worth growing
e These concepts are reinforcing
° For example,
o hard to follow user needs when contract has fixed functional
deliverables
o Not getting benefits of practicing Agile if you can’t continuously deploy
to users

Basic principles of modern
software design

e Building with loosely-coupled parts

e focus on this aspect
e can feel like the most overwhelming aspect.
e Especially for our context
o struggling with either legacy systems
o black-box system that was built for us that we don’t fully understand
e [f you have a large, monolithic, or mission-critical system, modernizing the
system is daunting
e How can you start to unwind such a system?

We just have to
rebuild the whole

thing, right?

13%

of major government software
projects succeed.

The Standish Group

° Remember what we said before

e We’re going to look at a technical strategy that addresses just this situation.
e different names, same concept
[J

Strangler (fig)
pattern

Martin Fowler

Sometimes it’s called The strangler pattern comes from Martin Fowler
refers to the Strangler Fig, which starts in the upper branches of a host tree
Grows and grows and eventually overtakes the host tree, strangling it

But “strangler” is a pretty violent term, and | avoid it for that reason.

Martin Fowler does too

Encapsulation

e Encapsulation is very similar
e It's the idea that you shouldn’t need to know how a system works to use it.

Encasement
Legacy
strategy Software

The encasement strategy is a term we’ve used at 18F for a while

It relates fragile legacy systems to a radioactive nuclear site like Chernobyl
both are things that are scary to touch

It's a bit hyperbolic, but this is the term | tend to use

° So here’s the basic idea

LEGACY FRONT-END

LEGACY DATABASE

e Here's the basic idea

e You've got your existing system, a front-end interface and the backend
components

° They’ve been around for a long time, have a bunch of brittle pieces, and
people are afraid to change it too much because everyone relies on it and no
one is sure how it all works

LEGACY FRONT-END NEW FRONT-END

LEGACY DATABASE

e Using the Encasement strategy
e |f you want to build a new component, you build new functionality next to the
old system, without really touching it too much

LEGACY FRONT-END NEW FRONT-END

API

LEGACY DATABASE

e In order to use data or functions from the legacy system

e An APl layer is built.

e APl means Application Programming Interface, and in general is a way for one
application/program/system to interact with another

e The API here is sort of translation layer between systems, allowing them to
communicate regardless of the technology used

e [t allows the new system to send and receive the necessary data without
having to worry about what’s going on inside the old system

e It also acts as a pivot point, loosely coupling the new system to the legacy
system

LEGACY FRONT-END NEW FRONT-END

API

LEGACY DATABASE

e New functionality gains adoption
e You turning off old functionality as it is replaced

LEGACY FRONT-END

LEGACY DATABASE

API

NEW FRONT-END

NEW DATABASE

e You do the same thing with the backend systems

e Gradually shifting responsibilities from the old backend to new backend

LEGACY FRONT-END NEW FRONT-END

API

LEGACY DATABASE NEW DATABASE

e Once you've shifted all the front and back end functionality over to the new
system,

NEW FRONT-END

API

NEW DATABASE

You can shut down the old system

That means you can shut down that on-prem data center, having moved
everything to the cloud

Or dedicate ongoing resources to run all the manual processes

(other modernization goal)

There was no big bang launch here, just gradually rolling out new features,
turning off old parts, until you finally have everything modernized

But really, this image is a bit of a lie

WORKER SYSTEM LEADERSHIP DASHBOARD

CLIENT PORTAL COMMODITY TOOL

API

—
STATE DEV

TEAM VENDOR B

VENDOR A

Developing this API layer opens up a wide range of possibilities

The ability to build separate, smaller, more focused tools

Involve multiple vendors in smaller procurements

Leverage in-house talent to build components

This is what we mean by “loosely-coupled architecture or systems

Different components, interacting with each other through well-defined APIs
each system doing its own thing, blissfully unaware of the other systems
but getting everything they need through the APIs

e Sonow let’s look at how the encasement strategy can actually transform an
application people use

v)

@]

O

m

So here is our legacy system
Let’s say this is an application eligibility workers use to do their work

e We've got a homepage or start screen.

v 9]

@]

O

m

We’'ve got four tasks, or complete series of steps that a user needs to take to
accomplish a piece of work.

e And then we've got work we know about
e things we know we need to improve

e And things we learn through research with or users

e The first thing we have to do is prioritize our work

o Thisis part of adopting a “product” mentality
e This is about more than technology

o can’'t do everything at once
Need to direct our work
We create a prioritized backlog of work
constantly re-evaluate
Not a sequential order burning fires

O O O O

At first, focus on learning and
don’t bite off too much

Prioritize meaningful new pieces that aren’t too hard

Build confidence in developing new APIs and building
this way

Stick with read-only functionality until you’re
comfortable

Early on, we’ll want to prioritize learning
o existing data
our old backend systems
building with agile methods
new technologies such as cloud environment,
deployment methods
o security requirements
Pick
o meaningful things
o deliver real value to users
o don't bite off too much
Also pick things that help you gain confidence
o building your new APIs
o knowing you can deliver this way
o focus on reading data from your old systems, maybe hold off on write
activities

O O O O

v)

@]

O

m

old application and our prioritized work
red box = new task/module/procurement
in the top priority slot.

We’ll work on that first.

E

Person search
User wants to find a

specific person in Person search
order to work their

case. Person search

e searching for a person
e where a user looks for a specific person to work their case.

1l N N .
M N N
>
M N
“ 1l

e We introduce the new module to our system.

o Welllcallit E2.

e It's an alternate experience that focused on the same task as the legacy E
task.

e We launch it alongside the existing workflow.

e Users can use either the old method or the new

E2

Once E2 has been adopted, the legacy E experience can be hidden.

D

Recertify an
application

User wants to review
current data and

make a determination Recertify an application
on recertification.

Recert

Cleint ID: 123456789

e Maybe our next task is recertifying eligibility

4 § K
© .

We introduce the recertification workflow
Shown here as D2.

e With adoption of the new recertification, we hide the legacy D experience.
e Note how we're shifting responsibilities from the old system to the new one.
e And we’re running them alongside existing legacy experiences

A2 %I:I 1

-
2
1l N N . :
C-_-_-_-_

> R
“
7

e New priority is focused on a new homepage
e The new homepage module provides navigation to both legacy and new
experiences.

.

& N N N B
N M B H K

e Maybe we add new functionality not in legacy

© 0
8 I 8 K |

e Them maybe we improve one of our new tasks further
[}

" N

e And then we replace another workflow

A2

- = N- P .

=]

. _—

a1 I KRl

g ¥ K 3

D3 i>9 i

a —
| — |

And another

A2

8 M N R

C2

D3

E2

M N R
9
. ©

N B

N

After launching a number of modules,

we have a system that’s been iteratively transformed.

We maintain a roadmap
continue making incremental improvements.

But won'’t this lead to a disjointed
experience during the transition?

e Yup.

Will experience be disjointed?

some tasks in old way and some in new?

Yup. that’s fine.

Forward motion is better than perfect consistency.
Here are a few tips that make it manageable

Home > TaskE > Step1l

“

Navigation is always difficult.

Once set, it can be difficult to change.

Users get used to it. Stakeholders fight over it.

Adopting a “hub-and-spoke” approach to global navigation.
Teams building a module don’t need to think about global nav,
just link back home.

A2 y

Home

Use the homepage for navigation

facilitate global navigation

aggregating links to anything necessary up front

You can avoid updating all you global navs by teaching folks to navigate from
the home

Jane Smith
Q M Central Office “

Some services will need to be exposed across pages:
Each module needs to be aware of the user’s identity.
Use search is a first class means of navigation
accessible in each workflow.

This will look different if your
legacy system is a mainframe
green screen or desktop
application.

e will look different if the application interface you are updating is not a
web-based application

e If you have a green screen system or software that is installed on each

eligibility worker’s computer

You'll do it a bit differently

Users can't just follow links between old pages and new

Context switching is real

Still, follow a similar process

Identify meaningful tasks that can be built anew

fully be completed in the new system to avoid context switching.

What are some of

the implications?

You'll be optimized for change

Priorities change

You should be able to respond to changing needs of your workers and clients
Building out that API layer makes that easier.

Optimized for change.

Deliver value faster

As pieces are developed, they are quickly rolled out

You don’t have to wait until everything you’ve dreamed of is finished
Roll em’out and test them with users

Deliver value faster

Reduced risk

You’re building smaller pieces

Run concurrently for a short time

Make switchover when proven

Risk is scoped the the smaller workflow, rather than the broad system
Reduced risk

Less vendor dependency

With APIs, vendors don’t need to understand the whole system

If one vendor doesn’t work out, you can hire another one with less startup
costs

Or multiple vendors can be working on different pieces without coordinating
Your well-documented APIs allow them to get started fast

Less vendor dependency

Become open to unanticipated uses

With API-layer in front of your backend systems

you're able to explore new opportunities you hadn’t planned

Say commodity workflow management system - optimize application
processing

Plug into APIs quickly

“‘commodity” = truly ready to use out of the box,

Connect the workflow system through your APIs and start using the product
instead of building one yourself

Become open to unanticipated uses

Use the APIs of others

When loosely-coupled, and pieces are talking to each other through your
APIs, you also become prepared to use APIs of others

Some of you may remember MAGI-in-the-Cloud

That’'s one example

Eligibility APIs

I~ \\ [Initiative

Exploring the idea of sharing eligibility criteria across
multiple states via APIs to reduce the work states need
to build in their own systems.

e Another example: Eligibility APIs Initiative
e We’re exploring the idea of sharing eligibility criteria
o across multiple states via APls
o reduce the work states need to build in their own systems.

Modernizing these

systems is hard.

e As | said before, modernizing these systems is hard
e We've had success using this approach, but it's a long road
e Hopefully this provides some food for thought.

18F

Eligibility APIs
Initiative
18F Human Talk
Services Portfolio to me

De-risking custom
logy projects

sa| 12t KTV

Talk to
Robin or Randy

qithub.com/18F/MESC2019

I'll leave this up here

We’'ve got a number of people to talk to
Portfolio

Me,

Robin and Randy

There’s a link to grab this presentation, learn more about our work at 18F, find
our more about the Eligibility APIs Initiative, and get that report | mentioned.
I think we have some time for questions, I’'m happy to try to answer any

questions you may have.

| also have my colleague Greg Walker here to help with some of the meatier

technical questions you may have.

https://github.com/18F/MESC2019-Encapsulation

Thanks to the following colleagues whose ideas I've
pulled from in this presentation:

e Steven Reilly

e Jeremy Zilar

e Uchenna Moka-Solana
e Dr. Robert Read

